光纤通信论文 光纤通信课程论文范文【优秀9篇】

时间:2024-01-16 08:38:10

无论是在学习还是在工作中,大家或多或少都会接触过论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。一篇什么样的论文才能称为优秀论文呢?该页是美丽的编辑给大伙儿收集的光纤通信课程论文范文【优秀9篇】,仅供参考,希望对大家有一些参考价值。

光纤通信课程论文 篇一

“剪刀差”原是指工农业产品交换时,工业产品价格高于价值,农产品价格低于价值所出出现的差额,因用图表表示呈剪刀张开形态而得名。由此可见,“剪刀差” 的存在,势必对弱势一方存在更多的不利因素,影响其进一步的发展。在高等教育快速发展的今天,高校本科生的光纤通信教学同样存在诸多“剪刀差”。

一、光纤通信教学剪刀差典型表现

光纤通信作为一门应用型课程,对学生的实践操作能力要求较高,但一般的教学中存在着注重理论教学轻视实验实践环节,形成剪刀差之一;在实践教学中,实验教学硬件设施与光纤通信理论发展速度不相称,此为剪刀差现象之二。

1.重理课论轻实践课的剪刀差

目前高校中,光纤通信课程一般为48-64学时不等,但是实践课一般为12学时,也有部分高校将实践课设置为24学时(总学时为64学时),可见实践课在总教学中所占比例为三分之一至四分之一之间,中国矿业大学光纤课程为48学时,实习课为4学时,远低于最低的12学时。重视理论课轻视实践课,不仅影响教学目标的实现,也与培养高素质技能型人才的课程目标不相符合。

2.实验教学硬件设施落后光纤发展

在工科院校“光纤通信”教学实践过程中,一个最突出的问题就是随着光纤通信新理论和新技术不断产生和发展,实验硬件更新升级落后、实验设备陈旧、实验项目单一,实验内容老化等。另外,采用封装性强、集成化程度试验箱型的实验方式在方便操作的同时却无法让学生深入了解光纤通信系统全貌。

二、改进举措

根据光线通信课程本身的特点,首先从课堂教学、实验与实践教学的内容上进行重新的选择与确定;其次创设良好的实验环境,来进一步缩小光纤通信教学现状与其发展要求之间的“剪刀差”。

1、“两结合”,注重课堂教学实效性 。

“两结合”是指教材基础知识教学与实践教学的结合以及科研与课堂教学的结合课堂教学的时效性首先体现在教学内容选择上。要根据光纤通课程和学生的特点,在重点突出基本基础知识的同时,注重与实践的结合,促使学生从知识型向能力型转变,养成正确的思维方法及分析解决问题的能力,为创造能力的养成打下坚实基础。

课堂教学以“系统如何构成和性能如何提高为主线”,结合通信发展趋势和前沿研究的典型问题让学生讨论探究。这就要求光纤通信的课堂教学不仅要注重科研与教学的有效融合,更应注重课上与课下教学的融合,积极构建课后学习研究与探讨的教学平台。这样不仅促使学生的学习变被动为主动,更可以有效的丰富教学与学习内容,及时把握光纤通信最新的发展方向和发展动态,进一步提高教学的时效性。

2、“两建设”,保障实验教学落到实处

“两建设”指的是光纤通信实验教学设备的建设和实验教学内容建设,其中实验教学设备建设是将实验教学落到实处的保障。

众所周知,由于光纤通信设备价格昂贵,引进或建设专业实验室难度较大,因此在实验教学中,可模仿中北大学的实验教学改革模式:实验教学在改革现有的实验项目的基础上。利用OptiSystem仿真平台,增加了创新型仿真实验内容(包括发射机设计、光接收机设计、光纤色散特性及补偿设计、 EDEA增益优化设计和40G单模光纤的单信号道传输系统设计),逐步构建“基础型、综合设计型、创新型”的分层次实践教学体系。

构建OptiSystem仿真实验教学平台,不仅有效缓解实验室建设的资金问题,改善了实验教学条件,更重要的是,在融入仿真技术后,不仅会提高学生综合应用所学知识和独立设计的能力,并会极大的促进光纤通信课堂教学的时效性,有助于课程教学质量的提升。

三、结束语

虽然学校类型以及培养目标的不同,其教学内容也会有所不同,但光纤通信课程的性质决定了它是一门理论性和实践性都很强的课程,因此在教学中要不断探索和改进,结合培养目标,不断提升学生的实践能力和创新能力!

光纤通信论文 篇二

(一)普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

(二)核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

(三)接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

(四)室内光缆

室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

(五)电力线路中的通信光缆

光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

(一)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

(二)光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

(三)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

三、结语

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。

参考文献:

[1]辛化梅、李忠,论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003,(04)

[2]毛谦,我国光纤通信技术发展的现状和前景[J].电信科学,2006,(8).

[3]王磊、裴丽,光纤通信的发展现状和未来[J].中国科技信息,2006,(4):59-60.

光纤通信课程论文 篇三

关键词 光纤通信;教学改革;OptiSystem仿真

中图分类号:TP391.9 文献标识码:B

文章编号:1671-489X(2013)24-0104-02

1 引言

光纤通信课程是高等工科院校通信工程专业的一门主要专业必修课,其基本理论是某些交叉学科的生长点和新兴边缘学科发展的基础,具有理论基础深、知识更新快、理论与实际联系紧密等特点。

随着光纤通信技术的迅猛发展,目前在教学过程中暴露出一些问题:1)现有实验设备不生动,仅是对基本原理的简单验证;2)光纤通信设备价格昂贵,引进或建设专业实验室难度较大;3)专业课知识更新速度快,课本及现有设备难于反映最新的发展成果;4)学生难于验证、实践对知识的构想。

基于以上原因,本课程的教学改革立足于将OptiSystem仿真技术融入光纤通信的教学中。

2 理论教学探索

光纤通信课程以培养和提高本科生的应用能力、创新能力和科研能力为基本目标。培养要求是:使学生较全面地掌握光纤通信的基本概念、基本理论和关键技术,理解和掌握光纤通信系统的性能分析和系统设计方法,了解现代光纤通信新技术的发展及应用情况。

根据培养目标和培养要求,该课程设置的教学内容包括:1)光纤传输理论;2)半导体光器件、光无源器件及光放大器的工作原理及特性;3)光端机的基本组成及各部件功能;4)光纤通信系统的组成和系统设计方法;5)光传输网及光纤通信新技术的基本原理及应用。

光纤通信的整个理论教学体系中,很多定理都伴随严格的数学证明和复杂的概念,并且很多概念比较抽象。比如:光在光纤中传输的波动光学理论,涉及电磁场与电磁波的知识,其公式推导繁琐抽象,致使学生理解起来比较困难。针对这一类问题,教师在备课时不仅需要精心设计教学内容,将重点、难点和抽象不容易理解的内容提炼出来,而且要根据这些知识点的特征采用恰当的教学方法和教学手段,比如采用传统黑板教学方式和技术相对成熟的多媒体教学方式相结合。实践证明,这样的教学方式已经取得比较满意的教学效果,并且在该课程组教师的共同努力下,与课程配套的多媒体网络课件在中北大学及全国多媒体课件大赛上获奖。

为进一步提高学生学习效率,在课堂教学中融入OptiSystem仿真技术。OptiSystem作为一款功能强大的光通信系统模拟软件,提供从元件到系统水平在传输层光通信系统的设计和预研,同时呈现可视化的分析结果。如光纤的非线性效应“四波混频FWM”,采用图1所示仿真原理图给学生讲解,两路光信号(波长分别为1540 nm和1540.5 nm)经过75千米单模光纤(SMF-28)传输,传输前后信号的光谱分别如图2和图3所示。图3显示,在1539.5 nm和1541 nm波长处出现新的频率成份,直观地表达了四波混频的概念:光纤中不同波长的光波相互作用,导致在其他波长上产生所谓混频产物或边带的新光波的现象。

另外,光纤的自相位调制、互相位调制、拉曼散射等非线性效应,掺铒光纤放大器(EDFA)的增益平坦特性,波分复用系统等相对抽象难理解的知识点,也采用了演示仿真原理图并对比波形的授课形式,具体程序不一一举出。

课程结束后,调查显示:绝大多数(83.26%)学生对课堂教学中融入OptiSystem仿真做出了积极评价,一致反映利用仿真技术把抽象的问题具体化,能够激发学习兴趣,从而优化课堂教学效果。

3 实验教学改革

实验教学是课堂理论教学的重要补充,是培养学生科学实践能力的重要环节。目前,中北大学开设的光纤通信实验项目分为基础型和综合设计型两类,实验室现有设备仅能满足固定功能的实验,不容易升级改进,不能充分体现光纤通信的优势。因此,实验教学改革是在现有实验项目的基础上,利用OptiSystem仿真平台,增加了创新型仿真实验内容(包括光发射机设计、光接收机设计、光纤色散特性及补偿设计、EDFA增益优化设计和40 G单模光纤的单信道传输系统设计),逐步构建“基础型、综合设计型、创新型”的分层次实践教学体系。

创新型仿真实验项目改革在具体实施的过程中,要求学生根据题目的难易程度独立或合作完成,并完成详细的实验报告,包括设计思路、设计框图、选用模块和参数设置的原因,仿真结果及实验现象分析并得出结论等内容。

关于仿真实验项目的改革已经实施两届,通过和学生的交流以及对实验报告的统计分析,结果显示:

1)增设的创新型仿真实验项目吸引的学生数量逐年增加(09级学生比08级学生增加30%);

2)学生在设计实验的过程中,如何选用模块并设置参数都与理论知识紧密结合,这样促进了理论与实践的有效结合;

3)与硬件实验相比较,仿真过程更具体,仿真结果更生动,实验效果得到明显改善;

4)学生敢于验证自己的构想,弥补了硬件设备的不足。

4 结束语

通过积极实行教学改革,在光纤通信课程理论和实验教学方面都取得一定成效。课堂教学方面,由于一些抽象难理解的知识点融入了仿真演示,提高了学生的学习积极性,明显改善了课堂教学效果;实验教学方面,融入仿真技术后,不仅提高了学生综合应用所学知识和独立设计的能力,而且极大地促进了光纤通信的基础理论研究,为学生走向工作岗位前进行工程素质的培养提供了理想手段,还能有效节省教学投资费用。

参考文献

[1]骆文。《光纤通信》课程教学改革与实践[J].长江大学学报:自然科学版,2010(6):368-369.

[2]黄永清,顾畹仪,等。光纤通信课程的教学改革[J].电气电子教学学报,2010(12):12-13.

[3]杨祥林,等。光纤通信系统[M].北京:国防工业出版社,2009.

[4]黄震,等。光纤通信教学实践与总结[J].教学研究,2011(5):58-59.

光纤通信技术论文 篇四

关键词 光纤;发展趋势;通信技术;对策;应用

中图分类号TN914 文献标识码A 文章编号 1674-6708(2010)30-0246-02

光纤通信最大的技术优点是信息容量大,且光纤的损耗低、传输距离长;光纤通信不易被电磁干扰,对信息的保密性能好;可以有效节约有色金属;光缆尺寸小,便于安装和运输。在这几十年的发展历程中,光纤通信已经成为现现代通信技术的重点。

1 光纤通信的特点

1.1 频带极宽,通信容量大

在光纤技术中,光纤可以容纳50 000GHz传输带宽,光纤通信系统的容许频带(带宽)是由光源的调制特性、调制方式和光纤的色散特性决定的。例如:单波长光纤通信系统一般是使用密集波分复用等一些复杂的技术,以便解决通信设备的电子瓶颈效应的问题,保证光纤宽带可以发挥更积极的作用,从而增加光纤的信息传输量。目前,单波长光纤通信系统的传输率已经得到了2.5Gbps到10Gbps。

1.2 抗电磁干扰能力强

光纤的制作材料主要是石英,其绝缘性好,抗腐蚀能力强。因此,光纤有较强的抗电磁干扰能力,且不受雷电、电离层的变化和太阳黑子活动等电磁影响,也不会被人为释放的电磁所干扰,这就是石英这种通信材料的最大优势。除以上有点之外,光纤体积小、质量轻,不仅可以节省空间,还便于安装;光纤的制作材料资源丰富,成本低;光纤的温度稳定性好,使用寿命长。由于光纤通信的优点很多,使其使用范围也不断扩宽。

2 光纤通信技术的应用

自上世纪90年代以来,我国光通信技术已经得到了很大的发展,特别是广播电视网、电力通信网、电信干线传输网等方面更是发展迅速,促使光纤生产量不断增加。现代信息网络通信系统不断扩展和增加,导致网络的管理和维护,以及设备的故障判定和排除就显得更加困难和繁杂。此时,我们采用SDH+光纤或ATM+光纤组成宽带数字传输系统,这种传输系统可以保证环网传输的稳定性,链路传输系统或者组成各种形式的复合网络,也能满足各种信息传输的需要。针对电视节目的传输,我们同事是采用的宽带传输系统进行传输,将主站到地方站的所有数字信息设置成广播的方式,让同样的电视节目可以在不同的地方下载,也能利用网络管理平台的控制,以便不同的站点可以下载不同的节目。目前,有线电视已经在全国普及,在有线电视的网络支持下,宽带多媒体传输网络就更容易实现了,因此,在这种情况下,我们不应完全废除现有的有线电视网,而是科学的利用它,满足人们的需要,将光纤通信技术融入到千万家,方便人们的生活。

3 现代通信系统的光纤技术

3.1 单纤双向传输技术

单纤双向传输技术是针对双纤双向传输而言的,双纤传输时,其信号可以在两根不同的光纤中传输,而单纤传输时,信号在调频过后可在不同的波段后,在同一根光纤里传输。现代光纤的传输容量不断增大,从理论上说,光纤传输的容量是无限的,只是受到设备等各种因素的影响,传输容量大大降低,远不及预期的效果。目前,光纤通信传送网都是通过双纤双向传输的,如果利用单纤双向传输技术就能有效的节省一半的光纤资源,而对于现代庞大的光纤网络传输系统中,可节省的光纤资源数量也是十分庞大的。

研发出成熟的单纤双向传输技术对网络通信的发展有十分积极的意义。单纤双向传输技术已经得到了广泛的使用,但主要用在光纤末端接入设备:PON无源光网络、单纤光收发器等设备,骨干传送网上还没有使用到这种技术。可见,这也是光纤通信技术的未来发展方向。

3.2 光纤到户(FTTH)接入技术

高速数据通信和高质量视频通信等媒体业务的发展和拓展,对现代宽带综合业务网的研究起到了积极的推动作用。而今,核心网便成为了以光纤线路为基础的高速信道,国际权威专家认为,宽带综合信息接入网是现代信息高速公路发展的“最后一公里”,同时也指出,这是信息通信发展的又一个瓶颈。虽然ADSL技术为现代通信业务提供了良好的基础,但对于未来将要发展的通信业务,如:网上教育,网上办公,会议电视,网上游戏等双向业务和HDTV高清数字电视,尤其是HDTV,现阶段的传输率仅为19.2Mbps,用H.264压缩技术可以压缩到5 Mbps~6Mbps。

在实践中,QOS有所保证的ADSL的最高传输速率是2Mbps,但仍然难以传输HDTV高清数字电视。而使用铜线接入的ADSL的方式已经无法再满足数据高速传输的需求,采用光纤接入技术已成为必然趋势,是未来通信技术的发展趋势。

4 光纤通信系统中的新技术探究

4.1 光网络的智能化

光网络智能化是通信技术的重要发展方向,光通信技术已有40年的发展历史,主要是以传输为主线的。但随着计算机技术的发展,加上计算机技术与通信技术的结合,网络技术得到了更高层次的进步,现代光网络中还加入了自动发现能力、连接控制技术和更完善的保护恢复功能,促使光网络的智能化发展,其中,ASON就是典型的例子。

4.2 全光网络

未来的通信网络是属于全光网络的世界,全光网是光纤通信技术发展的最高层次,也是光纤技术的最理想发展阶段。传统的光网络可以实现节点间的全光化,但在网络结点处仍采用电器件,限制了光纤通信容量的进一步提高,因此,真正的全光网已经成为光纤网络发展的最终极目标。

4.3 光器件的集成化

光电子器件的发展趋势是实现其集成化。想要实现全光通信网络,器件的集成是重点,也是核心,光子集成芯片的制造需要将将激光器、检测器、调制器和其他器件都集成到芯片中,这些集成需要在不同材料多个薄膜介质层上不停的沉积,主要材料有砷化铟镓、磷化铟等。虽然这是一种复杂的技术,但随着互联网多媒体技术的发展,传统的1M-6M的互联网接入带宽变得不足,因此,只通过增加设备来提高速度扩大带宽已经不现实了,可见,光器件的集成是必须的,也是保证光纤通信技术发展的核心内容。

5 结论

光纤通信技术的发展可以促进城市信息化的形成,而社会的信息化又进一步加速了光纤通信技术的发展,大容量、高速率是社会信息化的两个重要特征,新型光通信技术也正是为了解决现代光纤技术中的问题而诞生的,这必将使得光纤通信技术取的更大的发展。

参考文献

[1]裘庆生。浅析我国光纤通信发展现状及前景[J].信息与电脑:理论版,2009(12).

[2]刘海军。浅析光纤通信技术的现状与发展[J].科技信息,2009(31).

[3]白建春。光纤通信技术的发展及其应用[J].中国新技术新产品,2010(3).

光纤通信技术论文 篇五

关键字 信息时代;网络通信;三值光纤;通信原理

【中图分类号】TN929.11文献标识码:B文章编号:1673-8500(2013)01-0025-02

对于三值光纤通信是现代通信技术中一中新的通信技术,其主要是采用了线偏光的两个互相垂直的稳定的偏振趋向和零光强来完成光的三值编码调制出三值码元进行网络信息传输,这项新的技术进一步的提高了传统光纤的通信容量,同时这项技术实现了先偏光等通信手段的实用化,进一步加强了光纤的通信能力,极大的发展了通信技术,而且光的多值码元的编码还能提高光数字网络的信息传输率和频带的利用率。

1线偏振光的波动理论和在光纤中的传输原理

1.1三值光纤通信是一种新的通信技术,其理论基础主要是线偏振光在光纤中的波动理论。光纤通信中采用了电磁波频谱近红外光区的1300nm和1500nm两个低损耗的波段,但在光纤的通信中一般都是用经典的电磁波理论作为光纤通信的理论基础。光波属于横波,是由垂直于传播方向的,也是由其中相互正交的电场矢量和磁场矢量的简谐振动交替变换而产生的一种矢量波。当光波在物质间相互作用时,电场对物质的电场力要远大于磁场对电子的作用力,所以一般使用电场强度的振动来作为光波的振动,同时用电场强度的矢量端点在空间中的运动轨迹来表示光波的偏振状态,由于矢量的振动方向在空间中的取向是不对称性的,这样就使光波具有了偏振性。

1.2在研究线偏振光的波动中,光束中的光线的偏振状态在时间和空间中的变化是相同的,所以光束都完全是偏振光。同时光波的偏振形态一般分为完全偏振光、非偏振光、部分偏振光、有线偏振光、圆偏振光、椭圆偏振光、有自然光、有部分线偏振光、部分圆偏振光、部分椭圆偏振光等七种,由于是在不同的媒质中对光波进行形态的描述,因此我们可以采用米勒矩阵法、复平面法、琼斯矩阵法等表述方法对光波在传输过程中的偏振形态进行表示。

1.3在光纤的波动理论中,一般采用Maxwell的方程作为理论基础来研究电磁波在光纤波动中光纤的波动,来解释光纤理论和波动原理。同时由于存在不同的光纤材料和某些环境的因素对光波的线偏振态的产生了一定程度的影响,使光纤的纤芯在光纤的横截面上的折射率的分布造成了影响,致使折射率发生了一定程度的变化,使其变成沿轴向不均匀的分布,对光波的偏振形态造成了影响。

2三值光纤通信原理

2.1三值光纤通信是采用了束线偏振光承载信息的方式,利用水平线偏振态、垂直线偏振态和零光强来表示不同的信息值,形成了三值的光信号,通过有关的通信元器件,来完成信息的加工和三值光纤通信,一起组合成了完整的三值光纤通信技术。由于存在光纤的材料、通信元器件和外界环境等因素,光信号的线偏振态在传输过程中会受到这些因素的影响而发生变化,需要使用偏振控制器才能获得稳定的光信号,所以三值光纤实现了可以直接利用卫星激光进行通信,同时还能提高通信容量。

2.2对于三值光纤通信的系统原理,其主要是由三值光信号编码器、光信号解码器、偏振补偿器、电信号转换电路等组成。(如图1所示)。

图中所表示的是在发射端输入电信号输入变换器,转换成控制信号通过控制三值光纤信号编码器,其中在光源处再输出线偏光调制成三值光脉冲序列,配合前面的步骤就输出三值光信号进入光纤网络传输到接收端口,然后利用偏置电压控制器来控制偏振补偿器对接收的三值光信号进行有关调整,再传输进入三值光信号解码器输出有关的电信号来反馈一定的信号传输进入偏置电压控制器,偏置电压控制器就会根据电信号进行相应的调整来再次对偏振补偿器进行相应的调整,当得到稳定的电信号后传入电信号输出变化器中,最后接收电信号。其中三值光信号的编码器是在电信号的控制下,利用旋光器中电控旋光效应等来调整光源所发出的线偏光来获取三值光脉冲序列。而三值光信号解码器是把接收的三值光信号使用偏振分光棱镜,沿两个不同的光路对光信号进行解码并传输。同时偏振补偿器是接收的三值光的同步码序列,分两个不同的线路的固定的相位差来补偿电信号,通过识别同步码的信号,是否启动偏振补偿器,并不断地调整偏置电压控制器,促使零光强脉冲宽度达到设计的标准宽度,通过控制接收的光信号来使输出光时设计的偏振光。

2.3在三值光纤通信过程中会使用到到光学元器件(包括偏振分光镜、旋光器和偏振片等),其中旋光器是利用SLM通过对线偏振光的振动面旋转90°来获得互相垂直的线偏振光。而三值光缆的通信系统的主要是由三值光发送机、三值光接收器和再生器等组成,其中基本上是通过对两值光缆网对三值光纤通信进行纵向编码来实现三值光纤通信的信息传输量和频带的利用率。同时三值光信号的发送机原理是通过直接调制或间接调制三值光发送机,来使机器不间断的输入光信号,以达到对三值光信号的发送。其次是三值光信号的接收机是通过直接检波的原理来完成对三值光信号的接收工作。在整个三值光纤通信过程中,衔接的都比较紧密,而且每个环节都需要严格按照规范的操作进行,这样才能保证获取稳定的三值光信号,以保证整个三值光信号的传输通信。

总结:本文主要对三值光纤通信原理进行了浅要地论述和探讨,进一步研究和了解了三值光纤的通信技术。在对进行网络通信技术的研究过程中,我们需要掌握过硬的专业知识,并结合国内外先进的光纤通信技术,进一步对光电子信息技术、计算机科技和光纤通信技术等进行研究,认真分析研究三值光纤的通信原理,加强对三值光纤的利用,使我国在光电子信息技术能够得到长足的发展和进步。

参考文献

[1]徐坤,谢世钟。《高速光纤通信中的偏振模色散及其补偿技术》[J],半导体光电,2000年01期

[2]金翊。《三值光计算机原理和结构》[D],西北工业大学,2002年

[3]张华清。《通信网时钟同步方案》[J],北京广播学院学报(自然科学版),1999年02期

光纤通信论文 篇六

关键词:光纤;通信;发展;趋势;对策

1光纤通信发展历程

光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光波为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。

2光纤通信与卫星通信、无线电通信优势比较

现代通信网的3大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:

(1)频带宽,通信容量大。光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。

(2)损耗低,中继距离长。目前实用石英光纤的损耗可低于0.2dB/km,比其它任何传输介质的损耗都低,若将来采用非石英系极低损耗光纤,其理论分析损耗可下降至10-9dB/km。由于光纤的损耗低,所以能实现中继距离长,由石英光纤组成的光纤通信系统最大中继距离可达200多千米,由非石英系极低损耗光纤组成的通信系统,其最大中继距离则可达数千甚至数万千米,这对于降低海底通信的成本、提高可靠性和稳定性具有特别的意义。

(3)抗电磁干扰。光纤是绝缘体材料,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受电气化铁路馈电线和高压设备等工业电器的干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。

(4)无串音干扰,保密性好。光波在光缆中传输,很难从光纤中泄漏出来,即使在转弯处,弯曲半径很小时,漏出的光波也十分微弱,若在光纤或光缆的表面涂上一层消光剂效果更好,这样,即使光缆内光纤总数很多,也可实现无串音干扰,在光缆外面,也无法窃听到光纤中传输的信息。

(5)光纤线径细、重量轻、柔软,使传输系统所占空间小,解决地下管道拥挤的问题,节约地下管道建设投资。此外,光纤的重量轻,光缆的重要比电缆轻得多。

(6)光纤的原材料资源丰富,用光纤可节约金属材料。转321世纪初光通信及基础产业发展的主攻方向

波长就是一个信号系统,把从前的电路交换,换成当前的光路交换。这种交换系统就是把光的传输和交换融为一体,把交换给取消了。希望今年能作出一个演示系统。这个问题是最简单最有效的解决如此困惑传输高速路的问题,宽带推广应用就有很好的基础。

今后一定要研究支持大通信容量廉价的光器件。第一个是可变波长激光器、高频调制器;第二是波分复用/解复用器/滤波器;第三是增益平坦和锁定的SCL波段放大器;第四是RAMAN放大器;第五是高频光探测器、MEMS光开关。我国建立环保型的微电子和光电子的生产基地,我国的硅石材料是非常丰富的。多晶硅是未来最清洁的能源。

21世纪,要发展光网络与移动通信式的结合,这是一个很大的商机。光网络与毫米波的结合,如果成功的话,也是很大的具有革命性的进步。再一个是制造高精度的光纤陀螺。这不仅仅是未来航空系统,导弹系统要用它,国外的汽车里面也有陀螺。此外,新型实用化电流传感器、电压传感器,光纤光栅应力传感器,光纤光栅温度传感器。

4我国要积极创新开发具有自主知识产权的新技术

虽然这几年来,我国光缆电缆技术有很大发展,有一些具有自主知识产权的技术已在发挥作用,但是应该看到这种比例仍是很小的,国内有近200家光纤光缆厂,但大多产品单一,没有自主的知识产权,技术含量较低,竞争力不强。实际上我国的光纤光缆技术应该说与国际水平己差距下大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为我们工作的重中之重,争取创造更多的光纤光缆专利。

5抓住西部大开发的大好机遇,发展光缆电缆技术与产业

光纤通信论文 篇七

光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光波为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。

2光纤通信与卫星通信、无线电通信优势比较

现代通信网的3大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:

(1)频带宽,通信容量大。光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。

(2)损耗低,中继距离长。目前实用石英光纤的损耗可低于0.2dB/km,比其它任何传输介质的损耗都低,若将来采用非石英系极低损耗光纤,其理论分析损耗可下降至10-9dB/km。由于光纤的损耗低,所以能实现中继距离长,由石英光纤组成的光纤通信系统最大中继距离可达200多千米,由非石英系极低损耗光纤组成的通信系统,其最大中继距离则可达数千甚至数万千米,这对于降低海底通信的成本、提高可靠性和稳定性具有特别的意义。

(3)抗电磁干扰。光纤是绝缘体材料,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受电气化铁路馈电线和高压设备等工业电器的干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。

(4)无串音干扰,保密性好。光波在光缆中传输,很难从光纤中泄漏出来,即使在转弯处,弯曲半径很小时,漏出的光波也十分微弱,若在光纤或光缆的表面涂上一层消光剂效果更好,这样,即使光缆内光纤总数很多,也可实现无串音干扰,在光缆外面,也无法窃听到光纤中传输的信息。

(5)光纤线径细、重量轻、柔软,使传输系统所占空间小,解决地下管道拥挤的问题,节约地下管道建设投资。此外,光纤的重量轻,光缆的重要比电缆轻得多。

(6)光纤的原材料资源丰富,用光纤可节约金属材料。

关键词:光纤;通信;发展;趋势;对策

1光纤通信发展历程

光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光波为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。

2光纤通信与卫星通信、无线电通信优势比较

现代通信网的3大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:

(1)频带宽,通信容量大。光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。

(2)损耗低,中继距离长。目前实用石英光纤的损耗可低于0.2dB/km,比其它任何传输介质的损耗都低,若将来采用非石英系极低损耗光纤,其理论分析损耗可下降至10-9dB/km。由于光纤的损耗低,所以能实现中继距离长,由石英光纤组成的光纤通信系统最大中继距离可达200多千米,由非石英系极低损耗光纤组成的通信系统,其最大中继距离则可达数千甚至数万千米,这对于降低海底通信的成本、提高可靠性和稳定性具有特别的意义。

(3)抗电磁干扰。光纤是绝缘体材料,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受电气化铁路馈电线和高压设备等工业电器的干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。

(4)无串音干扰,保密性好。光波在光缆中传输,很难从光纤中泄漏出来,即使在转弯处,弯曲半径很小时,漏出的光波也十分微弱,若在光纤或光缆的表面涂上一层消光剂效果更好,这样,即使光缆内光纤总数很多,也可实现无串音干扰,在光缆外面,也无法窃听到光纤中传输的信息。

(5)光纤线径细、重量轻、柔软,使传输系统所占空间小,解决地下管道拥挤的问题,节约地下管道建设投资。此外,光纤的重量轻,光缆的重要比电缆轻得多。

(6)光纤的原材料资源丰富,用光纤可节约金属材料。321世纪初光通信及基础产业发展的主攻方向

波长就是一个信号系统,把从前的电路交换,换成当前的光路交换。这种交换系统就是把光的传输和交换融为一体,把交换给取消了。希望今年能作出一个演示系统。这个问题是最简单最有效的解决如此困惑传输高速路的问题,宽带推广应用就有很好的基础。

今后一定要研究支持大通信容量廉价的光器件。第一个是可变波长激光器、高频调制器;第二是波分复用/解复用器/滤波器;第三是增益平坦和锁定的SCL波段放大器;第四是RAMAN放大器;第五是高频光探测器、MEMS光开关。我国建立环保型的微电子和光电子的生产基地,我国的硅石材料是非常丰富的。多晶硅是未来最清洁的能源。

21世纪,要发展光网络与移动通信式的结合,这是一个很大的商机。光网络与毫米波的结合,如果成功的话,也是很大的具有革命性的进步。再一个是制造高精度的光纤陀螺。这不仅仅是未来航空系统,导弹系统要用它,国外的汽车里面也有陀螺。此外,新型实用化电流传感器、电压传感器,光纤光栅应力传感器,光纤光栅温度传感器。

4我国要积极创新开发具有自主知识产权的新技术

虽然这几年来,我国光缆电缆技术有很大发展,有一些具有自主知识产权的技术已在发挥作用,但是应该看到这种比例仍是很小的,国

关键词:光纤;通信;发展;趋势;对策

1光纤通信发展历程

光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光波为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。

2光纤通信与卫星通信、无线电通信优势比较

现代通信网的3大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:

(1)频带宽,通信容量大。光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。

(2)损耗低,中继距离长。目前实用石英光纤的损耗可低于0.2dB/km,比其它任何传输介质的损耗都低,若将来采用非石英系极低损耗光纤,其理论分析损耗可下降至10-9dB/km。由于光纤的损耗低,所以能实现中继距离长,由石英光纤组成的光纤通信系统最大中继距离可达200多千米,由非石英系极低损耗光纤组成的通信系统,其最大中继距离则可达数千甚至数万千米,这对于降低海底通信的成本、提高可靠性和稳定性具有特别的意义。

(3)抗电磁干扰。光纤是绝缘体材料,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受电气化铁路馈电线和高压设备等工业电器的干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。

(4)无串音干扰,保密性好。光波在光缆中传输,很难从光纤中泄漏出来,即使在转弯处,弯曲半径很小时,漏出的光波也十分微弱,若在光纤或光缆的表面涂上一层消光剂效果更好,这样,即使光缆内光纤总数很多,也可实现无串音干扰,在光缆外面,也无法窃听到光纤中传输的信息。

(5)光纤线径细、重量轻、柔软,使传输系统所占空间小,解决地下管道拥挤的问题,节约地下管道建设投资。此外,光纤的重量轻,光缆的重要比电缆轻得多。

(6)光纤的原材料资源丰富,用光纤可节约金属材料。

321世纪初光通信及基础产业发展的主攻方向

波长就是一个信号系统,把从前的电路交换,换成当前的光路交换。这种交换系统就是把光的传输和交换融为一体,把交换给取消了。希望今年能作出一个演示系统。这个问题是最简单最有效的解决如此困惑传输高速路的问题,宽带推广应用就有很好的基础。

今后一定要研究支持大通信容量廉价的光器件。第一个是可变波长激光器、高频调制器;第二是波分复用/解复用器/滤波器;第三是增益平坦和锁定的SCL波段放大器;第四是RAMAN放大器;第五是高频光探测器、MEMS光开关。我国建立环保型的微电子和光电子的生产基地,我国的硅石材料是非常丰富的。多晶硅是未来最清洁的能源。

21世纪,要发展光网络与移动通信式的结合,这是一个很大的商机。光网络与毫米波的结合,如果成功的话,也是很大的具有革命性的进步。再一个是制造高精度的光纤陀螺。这不仅仅是未来航空系统,导弹系统要用它,国外的汽车里面也有陀螺。此外,新型实用化电流传感器、电压传感器,光纤光栅应力传感器,光纤光栅温度传感器。

4我国要积极创新开发具有自主知识产权的新技术

虽然这几年来,我国光缆电缆技术有很大发展,有一些具有自主知识产权的技术已在发挥作用,但是应该看到这种比例仍是很小的,国内有近200家光纤光缆厂,但大多产品单一,没有自主的知识产权,技术含量较低,竞争力不强。实际上我国的光纤光缆技术应该说与国际水平己差距下大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为我们工作的重中之重,争取创造更多的光纤光缆专利。

5抓住西部大开发的大好机遇,发展光缆电缆技术与产业

西部大开发是国家的重大策略,国家制定了有利的政策,政府对发展通信等行业也给予了大力的支持。西部是一个地域复杂、分布较宽、通信相对落后的地区。经济大发展中,通信要先行,需要一些与之相适应的光纤光缆及通信电缆的先进产品来配合发展的需求。因此,符合条件的产品将会在这里找到很好的市场,光纤光缆和通信电缆的各种技术、产品及成果都会在西部开发中得到发挥。内有近200家光纤光缆厂,但大多产品单一,没有自主的知识产权,技术含量较低,竞争力不强。实际上我国的光纤光缆技术应该说与国际水平己差距下大,因此我们作为世界第二的光缆大国,应该把开发具有自主知识产权的技术作为我们工作的重中之重,争取创造更多的光纤光缆专利。

5抓住西部大开发的大好机遇,发展光缆电缆技术与产业

西部大开发是国家的重大策略,国家制定了有利的政策,政府对发展通信等行业也给予了大力的支持。西部是一个地域复杂、分布较宽、通信相对落后的地区。经济大发展中,通信要先行,需要一些与之相适应的光纤光缆及通信电缆的先进产品来配合发展的需求。因此,符合条件的产品将会在这里找到很好的市场,光纤光缆和通信电缆的各种技术、产品及成果都会在西部开发中得到发挥。

光纤通信论文 篇八

光波分复用(WavelengthDivisionMultiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。

WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。

二、WDM系统的基本构成

WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。

三、双纤单向WDM系统的组成

以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。

1.光发射机

光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

2.光中继放大器

经过长距离(80~120km)光纤传输后,需要对光信号进行光中继放大,目前使用的光放大器多数为掺铒光纤光放大器(EDFA)。在WDM系统中必须采用增益平坦技术,使EDFA对不同波长的光信号具有相同的放大增益,并保证光信道的增益竞争不影响传输性能。

3.光接收机

在接收端,光前置放大器(PA)放大经传输而衰减的主信道信号,采用分波器从主信道光信号中分出特定波长的光信道,接收机不但要满足对光信号灵敏度、过载功率等参数的要求,还要能承受一定光噪声的信号,要有足够的电带宽性能。

4.光监控信道

光监控信道的主要功能是监控系统内各信道的传输情况。在发送端插入本节点产生的波长为λs(1550nm)的光监控信号,与主信道的光信号合波输出。在接收端,将接收到的光信号分波,分别输出λs(1550nm)波长的光监控信号和业务信道光信号。帧同步字节、公务字节和网管使用的开销字节都是通过光监控信道来传递的。

5.网络管理系统

网络管理系统通过光监控信道传送开销字节到其他节点或接收来自其他节点的开销字节对WDM系统进行管理,实现配置管理、故障管理、性能管理、安全管理等功能。

四、光波分复用器和解复用器

在整个WDM系统中,光波分复用器和解复用器是WDM技术中的关键部件,其性能的优劣对系统的传输质量具有决定性作用。将不同光源波长的信号结合在一起经一根传输光纤输出的器件称为复用器;反之,将同一传输光纤送来的多波长信号分解为个别波长分别输出的器件称为解复用器。从原理上说,该器件是互易(双向可逆)的,即只要将解复用器的输出端和输入端反过来使用,就是复用器。光波分复用器性能指标主要有接入损耗和串扰,要求损耗及频偏要小,接入损耗要小于1.0~2.5db,信道间的串扰小,隔离度大,不同波长信号间影响小。

在目前实际应用的WDM系统中,主要有光栅型光波分复用器和介质膜滤波器型光波分复用器。

1.光栅型光波分复用器

闪耀光栅是在一块能够透射或反射的平面上刻划平等且等距的槽痕,其刻槽具有小阶梯似的形状。当含有多波长的光信号通过光栅产生衍射时,不同波长成分的光信号将以不同的角度射出。当光纤中的光信号经透镜以平行光束射向闪耀光栅时,由于光栅的衍射作用,不同波长的光信号以方向略有差异的各种平行光返回透镜传输,再经透镜聚焦后,以一定规律分别注入输出光纤,从而将不同波长的光信号分别以不同的光纤传输,达到解复用的目的。根据互易原理,将光波分复用输入和输出互换即可达到复用的目的。

2.介质膜滤波器型光波分复用器

目前WDM系统工作在1550nm波长区段内,用8,16或更多个波长,在一对光纤上(也可用单光纤)构成光通信系统。其波长与光纤损耗的关系见图4。每个波长之间为1.6nm、0.8nm或更窄的间隔,对应200GHz、100GHz或更窄的带宽。

五、WDM技术的主要特点

1.充分利用光纤的巨大带宽资源,使一根光纤的传输容量比单波长传输增加几倍到几十倍,从而增加光纤的传输容量,降低成本,具有很大的应用价值和经济价值。

2.由于WDM技术中使用的各波长相互独立,因而可以传输特性完全不同的信号,完成各种信号的综合和分离,实现多媒体信号混合传输。

3.由于许多通信都采用全双式方式,因此采用WDM技术可节省大量线路投资。

4.根据需要,WDM技术可以有很多应用形式,如长途干线网、广播式分配网络,多路多地局域网等,因此对网络应用十分重要。

5.随着传输速率不断提高,许多光电器件的响应速度明显不足,使用WDM技术可以降低对一些器件在性能上的极高要求,同时又可实现大容量传输。

6.利用WDM技术选路,实现网络交换和恢复。

光纤通信论文 篇九

论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。

1.光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

2.光纤通信技术的特点

(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

3.光纤通信技术在有线电视网络中的应用

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。

有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。

参考文献:

[1]王磊,裴丽。光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

[2]何淑贞,王晓梅。光通信技术的新飞跃[J].网络电信,2004,(2)

最新范文

计算机控制技术论文范文(通用10篇)01-16

投资理财的论文范文(优秀7篇)01-16

专科护理学毕业论文范文【精选10篇】01-16

插花艺术论文范文通用3篇01-16

工商管理专科论文范文最新8篇01-16

公共事业管理论文题目(最新4篇)01-16

旅游管理的毕业论文精选7篇01-16

毕业论文参考文献综述01-16

产业经济学论文(通用9篇)01-16

硕士论文评阅意见01-16

122 296775